• О ПРОЕКТЕ

Основной расчет при ядерном ударе делается на моментальный эффект, возникающий непосредственно при взрыве, — разрушительную ударную волну, проникающую радиацию,световое излучение. Заодно проявляется и еще один весьма неприятный побочный эффект — радиоактивное загрязнение местности. История знает случай, когда военные предполагали делать ставку именно на последний поражающий фактор, применив «грязную бомбу», способную сделать любую территорию непригодной для жизни на очень, очень долгое время.

Впрочем, первым, кого посетила подобная идея, был не ученый-маньяк, не диктатор маленькой страны третьего мира и даже не генерал из Пентагона. В 1940 году начинающий, но уже подающий большие надежды американский фантаст Роберт Хайнлайн написал рассказ «Никудышное решение». В Европе уже раскачивался маховик Второй мировой, и мир, содрогаясь от предчувствия грядущей войны, спешно вооружался; Хайнлайн же интересовался физикой, и потому его творческая мысль потекла по очевидному руслу: какими новейшими методами человекоубийства могут обернуться последние достижения науки, в частности расщепление ядра урана, открытое в 1939 году Отто Ганом и Фрицем Штрассманом.

 

Интересный факт: в своем рассказе Роберт Хайнлайн за три года до Манхэттенского проекта предугадал его создание. Но если результатом исследований, осуществленных в рамках реального Манхэттенского проекта, стали атомные бомбы, сброшенные на японские города, то ученые, задействованные в вымышленном Специальном оборонном проекте №347, так и не смогли решить проблему управления ядерной реакцией — а потому решили пойти другим путем и воспользоваться убийственными свойствами радиоактивности неустойчивых изотопов. В альтернативной вселенной рассказа, чтобы принудить Германию к капитуляции, Соединенные Штаты Америки в 1945 году сбросили на Берлин несколько десятков компактных бомб с радиоактивной пылью — город не пострадал, но полностью обезлюдел, — а после взяли курс на мировое господство демократических ценностей, подкрепленных «грязными бомбами».

«Фантастика», — скажет читатель. Увы, но то, о чем писал Роберт Хайнлайн, вполне было возможно в годы Второй мировой войны и тем более может стать реальностью сегодня.

Радиоактивная пыль

Радиологическому оружию, как еще называют «грязные бомбы», вовсе не обязательно быть собственно бомбой. В рассказе Хайнлайна, например, русские (создавшие подобное оружие практически одновременно с американцами) рассеивали радиоактивную пыль над американскими городами прямо с самолетов, как инсектицид на поля (кстати, еще одно меткое предвиденье автора: задолго до начала холодной войны он предугадал, что именно СССР станет основным соперником Соединенных Штатов в области сверхоружия). Даже выполненное в форме бомбы, подобное оружие не наносит существенных материальных разрушений — небольшой заряд взрывчатого вещества используется для того, чтобы рассеять в воздухе радиоактивную пыль.

При ядерном взрыве образуется значительное количество разнообразных неустойчивых изотопов, помимо того, происходит заражение наведенной радиоактивностью, возникающей вследствие нейтронного ионизирующего облучения почвы и объектов. Однако уровень радиации после ядерного взрыва относительно быстро падает, поэтому самый опасный период можно переждать в бомбоубежище, а зараженная территория спустя несколько лет становится пригодна для использования в хозяйственных целях и для проживания. Так, например, Хиросима, пострадавшая от урановой бомбы, и Нагасаки, где была взорвана бомба из плутония, начали отстраиваться заново через четыре года после взрывов.

Совсем иначе бывает, когда взрывается достаточно мощная «грязная бомба», специально предназначенная для максимального загрязнения территории и превращения ее в подобие Чернобыльской зоны отчуждения. Различные радиоактивные изотопы имеют разный период полураспада — от микросекунд до миллиардов лет. Наиболее неприятны из них те, полураспад которых происходит за годы — время, существенное относительно продолжительности человеческой жизни: их не пересидишь в бомбоубежище, при достаточном загрязнении ими местность остается радиоактивно опасной на протяжении нескольких десятилетий, и поколения успеют смениться несколько раз, прежде чем в разрушенном городе (или на другой территории) снова можно будет работать и жить.

К числу самых опасных для человека изотопов относятся стронций-90 и стронций-89, цезий-137, цинк-64, тантал-181. Следует иметь в виду, что разные изотопы по‑разному влияют на организм. Например, йод-131, хоть и имеет относительно короткий период полураспада в восемь дней, представляет серьезную опасность, так как быстро накапливается в щитовидной железе. Радиоактивный стронций накапливается в костях, цезий — в мышечных тканях, углерод распределяется по всему организму.

Слухами земля полнится

Несмотря на то, что грязные бомбы никогда не производились и не использовались в реальных боевых действиях, журналистские «утки», связанные и этой темой, регулярно появлялись в печати, вызывая неоднозначную реакцию как у общественности, так и у спецслужб. Например, 1955 по 1963 гг. британцы испытывали атомные заряды в Маралинге (Южная Австралия). В рамках этой программы была проведена операция под кодовым названием Antler, цель которой заключалась в испытаниях термоядерного оружия. Программа включала три теста с зарядами разной мощности (0.93, 5.67 и 26.6 килотонн), причём в первом случае (кодовое имя — Tadje, 14 сентября 1957 года) на полигоне располагались радиохимические метки из обычного кобальта (Co-59), который под воздействием нейтронов превращается в кобальт-60. Измеряя интенсивность гамма-излучения меток после испытаний, можно довольно точно судить об интенсивности нейтронного потока при взрыве. Слово «кобальт» просочилось в прессу, и это послужило причиной слухов о том, что Великобритания не только построила «грязную» кобальтовую бомбу, но и испытывает её. Слухи не подтвердились, но «утка» серьёзно навредила международному имиджу Британии — вплоть до того, что в Маралингу выезжала Королевская комиссия для проверки того, чем всё-таки занимаются в Австралии британские ядерщики.

Единицы измерения поглощенной организмом радиации — зиверт (Зв) и устаревший, но еще встречающийся в публикациях бэр («биологический эквивалент рентгена», 1 бэр = 0,01 Зв). Нормальная доза радиоактивного облучения, получаемая человеком от природных источников в течение года, составляет 0,0035−0,005 Зв. Облучение в 1Зв — это нижний порог развития лучевой болезни: существенно слабеет иммунитет, ухудшается самочувствие, возможны кровотечения, выпадение волос и возникновение мужского бесплодия. При дозе в 3−5 Зв без серьезной медицинской помощи половина пострадавших умирает в течение 1−2 месяцев, у выживших так или иначе высока вероятность развития раковых заболеваний. При 6−10 Зв у человека практически полностью отмирает костный мозг, без полной его пересадки вероятности выжить нет, смерть наступает через 1- 4 недели. Если человек получил более 10 Зв, спасти его невозможно.

Кроме соматических (то есть возникающих непосредственно у облученного человека) последствий имеют место еще и генетические — проявляющиеся у его потомства. Следует иметь в виду, что уже при относительно небольшой дозе радиоактивного облучения в 0,1 Зв вероятность генных мутаций удваивается.

Кобальтовая бомба

В 1952 году Лео Силард, ученый, двумя десятилетиями ранее открывший цепную ядерную реакцию, бывший участник Манхэттенского проекта, в общих чертах предложил следующую идею: если водородную бомбу окружить оболочкой из обычного кобальта-59, то при взрыве он превратится в неустойчивый изотоп кобальт-60 с периодом полураспада около 5,5 года, — мощнейший источник гамма-излучения. Распространено (в том числе и в художественной литературе) заблуждение, что кобальтовая бомба — чрезвычайно мощное взрывное устройство, «суперъядерная бомба», — но это не так. Основным поражающим фактором кобальтовой бомбы является вовсе не ядерный взрыв, а максимально возможное радиационное загрязнение местности, так что эта бомба — самая что ни на есть «грязная», если угодно, «супергрязная». К чести Силарда следует сказать, что он сделал свое предложение не из милитаристских побуждений и не в состоянии наивной оторванности от реальности, часто свойственном жрецам науки, а исключительно для того, чтобы продемонстрировать абсурдность, самоубийственную бессмысленность гонки за сверхоружием. Но впоследствии другие ученые провели точные расчеты и пришли к выводу, что при достаточной (и вполне реальной для изготовления) величине кобальтовой бомбы она (либо совокупность подобных бомб) уничтожит все живое на Земле. И как сейчас знать, делали они эти расчеты из собственного любопытства или по звонку из Пентагона: «рассчитать возможность, эффективность, стоимость, к вечеру отчитаться»?..

Никто и никогда прежде не предлагал реализуемый вариант оружия (сколь бы массовым ни был его поражающий эффект), способного стерилизовать всю планету. В 1950-х годах аналитиком исследовательского центра RAND Германом Каном было введено понятие «Машины Страшного суда». Обладающее таким устройством государство способно диктовать свою волю всему миру, но это будет воля смертника, сжимающего в руке гранату без чеки.

«Грязная бомба» в домашних условиях

«Популярная механика» задалась вопросом, сколько датчиков дыма нужно «расковырять», чтобы добытого таким образом америция хватило для создания «грязной бомбы» в домашних условиях. Итак, в современно датчике дыма HIS-07 содержится примерно 0,25 мкг америция-241 (0,9 мкКи). В древнем советском датчике дыма РИД-1 содержится два источника по 0,57 мКи плутония-239, что соответствует примерно 8 мг (суммарно 16 мг на датчик). В относительно новом советском датчике дыма РИД-6М содержится два источника по 5,7 мкКи плутония-239, что соответствует примерно по 80 мкГ (итого 160 мкг на датчик — уже неплохо!). 

Критическая масса сферы из америция-241 при нормальных условиях без применения отражателя нейтронов оценивается в 60 кг. Критическая масса сферы плутония-239 при нормальных условиях без применения отражателя нейтронов — в 11 кг. Отражатель нейтронов и продуманная имплозивная схема могут позволить создать бомбу, имея лишь 1/5 от этих масс. Но даже в этом случае нам потребуется плутоний из 140 тысяч датчиков РИД-1, 14 миллионов датчиков РИД-6М или 48 миллионов HIS-07.

Что до грязной бомбы, можно сказать, что опасным будет уровень загрязнения поверхности земли порядка 1 мКи/м2. Это значит, что на 1 м2 нужен один РИД-1, 100 РИД-6М и 1000 HIS-07. Зато одного РИТЭГ (радиоизотопного термоэлектрического генератора, используемого, к примеру, на удалённых маяках и метеостанциях) Бета-М хватит сходу на 35 000 м2. А безусловно вредным и выходящим за рамки любых норм будет уровень загрязнения порядка 1 мкКи/м2. Соответственно, РИД-1 может основательно загадить 1000 м2, РИД-6М — 10 м2, а HIS-07 — 1 м2. Ну а РИТЭГ Бета-М загадит ни много ни мало 35 км2.

Это, конечно, условные цифры. Разные изотопы имеют разную опасность, что именно считать опасным, а что вредным — весьма спорный вопрос. Плюс к тому малые количества распыляются неравномерно, так что реальные площади загрязнения будут куда меньше.

Как сказал Харрисон Браун в радиодискуссии с Лео Силардом, «с помощью такой бомбы гораздо проще уничтожить все человечество, чем какую-то определенную его часть».

Вероятно, поэтому до настоящего времени кобальтовая бомба — насколько нам известно — так и остается «гипотетическим» оружием, как и «грязные бомбы» вообще. Но угроза их применения высока, выше, чем угроза ядерной войны. Особенно в наше напряженное время. К слову, по иронии судьбы, Силард, подобно предсказавшему «грязную бомбу» Хайнлайну, был известен также как писатель-фантаст, автор ряда научно-фантастических рассказов, в том числе переведенных на русский язык еще в советское время.

Кому это выгодно?

Насколько известно, официально ни одно государство не имеет радиологического оружия. Оно невыгодно для традиционных войн: «грязная бомба» не позволяет уничтожать врага мгновенно, как другие виды оружия, ее эффект растянут во времени, кроме того, на долгие годы она делает территорию непригодной для захвата и использования — и даже для ввода войск. В качестве оружия сдерживания «грязная бомба» тоже не лучший вариант, когда есть ракеты с ядерными боеголовками.

Однако, в то время как «грязная бомба» не подходит ни для «горячего», ни для «холодного» вооруженного противостояния, она вполне годится для группировок, ведущих войны нетрадиционными методами, в первую очередь террористических. Радиологическое оружие позволяет наносить максимальный урон мирному населению — следовательно, это идеальное средство устрашения. 11 сентября 2001 года во время крупнейшего теракта под руинами «башен-близнецов» погибли без малого 3000 человек. Если бы в том же самом месте взорвалась средней мощности «грязная бомба» — счет пострадавших пошел бы на миллионы. Канал National Geographic снял 40-минутный видеофильм, демонстрирующий последствия гипотетического взрыва небольшой америциево-стронциевой «грязной бомбы» посреди американского городка — там наглядно смоделированы последствия подобного взрыва.

Есть и еще один неприятный сценарий, аналогичный по эффекту использованию радиологического оружия: террористический акт с обыкновенным взрывом на атомной электростанции.

Сегодня, когда опасность террористических актов высока, людям необходимо знать, что происходит и как следует себя вести при взрывах, в том числе при взрывах «грязных бомб». Видимо, тут стоит адресовать читателей к фильму National Geographic, который так и называется — «Грязная бомба» (Dirty Bomb). И хотя фильм демонстрирует действия американской системы гражданской обороны, российский зритель также может почерпнуть из него немало полезной информации.

 

Источник